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PPOL502-01, Spring 2016 
Course Notes #3: Introduction to Multivariate Regression 
__________________________________ 
 
I. INTRODUCTION 
 
 • Up until now, we’ve removed ourselves from reality a little bit to imagine that only 

one X variable might explain the variation in Y (e.g., we are better able to predict 
body fat percentage if we know a person’s weight; or we are better able to predict 
wages if we know a person’s IQ score; but we haven’t gone beyond those variables). 

 
 • Even though we know that other factors may affect Y we said that we were not 

worried about these things (with regard to biasing the coefficient estimate on the 
independent variable) IF SLR1 through SLR4 were met.   

 
 • In particular, we were worried about SLR4: that the omitted factors were not 

correlated with the X in the model (i.e., the assumption of E(u|X)=0) 
 

• How good is this assumption? 
 
• Let’s go back to the wages model.  In the example we worked with in course notes 1, we 

said that wages were a function of IQ scores:  Wages = f (IQ), and we estimated the 
following regression line: WAGES = 116.99 + 8.30(IQ).  For each additional point increase 
in IQ score, we predicted that monthly wages would increase by $8.30, on average. 

 
• A bunch of other factors might influence wages.  One of these may be education.  

When we say this, we were saying that we think that education (an independent 
variable) and wages (the dependent variable) are related in some way. 

 
  [And now for a (seemingly) unrelated question: Do you think that there is an 

association between IQ and education (two possible independent variables)?   
 
 • Let’s use STATA to plot the relationships between (1) Wage and IQ, (2) Wage and 

Education, and (3) IQ and Education: 
 
STATA CODE FOR GRAPHS BELOW: 
 
use card 
 
graph twoway scatter wage iq, ylabel(0(500)2500) ytitle("Wage in cents per 
hour") xlabel(0(50)150) xtitle("IQ") 
 
graph twoway scatter wage educ, ylabel(0(500)2500) ytitle("Wage in cents per 
hour") xlabel(0(5)25) xtitle("Years of education") 
 
graph twoway scatter iq educ, ylabel(0(50)150) ytitle("IQ") xlabel(0(5)25) 
xtitle("Years of education ") 
____________________________________ 
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. summ wage IQ educ 
 
    Variable |       Obs        Mean    Std. Dev.       Min        Max 
-------------+-------------------------------------------------------- 
        wage |      3010    577.2824    262.9583        100       2404 
          IQ |      2061    102.4498    15.42376         50        149 
        educ |      3010    13.26346    2.676913          1         18 
 
 
 
. pwcorr wage IQ educ, obs sig 
 
             |     wage       IQ     educ 
-------------+--------------------------- 
        wage |   1.0000  
             | 
             |     3010 
             | 
          IQ |   0.1920   1.0000  
             |   0.0000 
             |     2061     2061 
             | 
        educ |   0.3019   0.5103   1.0000  
             |   0.0000   0.0000 
             |     3010     2061     3010 
 
 
• So how can we account for both IQ and Education in our estimated model? 
  Y = β0 + β1X1 + β2X2 + u  WAGE = β0 + β1IQ + β2EDUC+u 
 
• To include both IQ and Education in the OLS regression model as explanatory variables, 

just add EDUC to the regress statement in Stata: 
 
 

. regress wage IQ educ 
 
      Source |       SS       df       MS              Number of obs =    2061 
-------------+------------------------------           F(  2,  2058) =   66.24 
       Model |  8675400.98     2  4337700.49           Prob > F      =  0.0000 
    Residual |   134772670  2058  65487.2062           R-squared     =  0.0605 
-------------+------------------------------           Adj R-squared =  0.0596 
       Total |   143448071  2060  69634.9861           Root MSE      =   255.9 
 
------------------------------------------------------------------------------ 
        wage |      Coef.   Std. Err.      t    P>|t|     [95% Conf. Interval] 
-------------+---------------------------------------------------------------- 
          IQ |   1.725291   .4250631     4.06   0.000     .8916926     2.55889 
        educ |   20.73191   2.882899     7.19   0.000      15.0782    26.38561 
       _cons |   149.1893   41.89648     3.56   0.000     67.02539    231.3532 
------------------------------------------------------------------------------ 
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• NOTE: For now, we will focus on interpretation of the point estimates (with an eye toward 

the p-values for statistical significance: In a later set of Course Notes, we’ll focus 
specifically on hypothesis testing for regression coefficients.  You know from Quant 1 that 
technically, you first test for statistical significance, then interpret the parameter estimate.   

 
• How do you interpret the intercept, 0β̂ ? 
 
• The coefficient estimate for IQ is now interpreted slightly differently than before:   
 
 “Holding education constant, each additional IQ point increase is associated with a 1.73 

cents per hour increase in wages, on average.” 
 
 Thus, the coefficient on IQ gives the partial effect of IQ on wages, holding education constant. 
 
 You might say this as, “ceteris paribus, each additional IQ point increase….” 
 
  where ceteris paribus means “other (relevant) factors being equal” 
 
  -- here, we are explicitly controlling for education in the equation; and anything 

else that might affect wages we are assuming is random (i.e., not systematically 
related to the variables in the model) 

 
• Now interpret the coefficient on EDUC…. 
 
 
 
• What does this mean?  Wooldridge (p. 76-77) provides a really helpful way to think about 
this.  We’ll use his words to explain this regression that we just calculated: 
 

 “The power of multiple regression analysis is that it provides this ceteris paribus 

interpretation even though the data have not been collected in a ceteris paribus fashion.  In 

giving the coefficient on [IQ] a partial effect interpretation, it may seem that we actually 

went out and sampled people with the same [EDUCATION] but possibly with different 

[IQ] scores.  This is not the case.  The data are a random sample [of the U.S. population]:  

there were no restrictions placed on the sample values of [IQ] or [EDUCATION] in 

obtaining the data.  Rarely do we have the luxury of holding certain variables fixed in 

obtaining our sample.  If we could collect a sample of individuals with the same 

[EDUCATION], then we could perform a simple regression analysis relating [WAGES] to 
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[IQ].  Multiple regression effectively allows us to mimic this situation without restricting 

the values of any independent variables.” 

 

 “The power of multiple regression analysis is that it allows us to do in nonexperimental 

environment what natural scientists are able to do in a controlled laboratory setting: keep 

other factors fixed.” 

 

• The key is that these other factors must be either (1) explicitly measured and included in 
the regression, or (2) assumed (or known) to be uncorrelated to either the dependent 
variable, or the independent variables. 

 
• More in the next set of notes on what “holding a factor constant” means, and on the 

“partialling out” interpretation for multiple regression coefficients. 
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II. MECHANICS AND ASSUMPTIONS OF MULTIVARIATE OLS 
 
 • Just as in the simple case, the coefficients in multivariate OLS estimation are selected 

to minimize the sum of squared residuals, i.e. 
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 • Just as we went through the assumptions of a simple regression model, we can state 
assumptions of the multiple linear regression model (remember, these are 
assumptions!  You need to think about whether or not they hold): 

 
 MLR Assumption 1:  (linear in the parameters): The dependent variable, Y is a function of a 

set of independent variables, X.  The coefficient β that corresponds to each of the Xs is a 
constant (unknown).  The unmeasurable, remaining error (u) is assumed to be random.  
Think of this as the population regression model. We’ll also call it the “true” model: 

 
    Y = β0 + β1X1+β2X2+β3X3+…βkXk + u 
 
 MLR Assumption 2: A random sample of n observations is drawn from the population of interest. 
 
 MLR Assumption 3:  The number of observations in the sample is greater than the 

number of independent variables X in the regression model; none of the independent 
variables is constant; and there is no exact linear relationship among the independent 
variables (i.e., no perfect collinearity among the X variables) 

 
 MLR Assumption 4:  The expected value of the error term, u, is zero conditional on the 

Xs in the model: 
 
    E(u|X1, X2, X3, …. Xk) = 0 
 
  As before, we know this assumption is violated when elements of the error term, u, 

are correlated with the Xs that are included in the model.   
 
  Another way of saying this is: If factors are associated with Y but they are not 

specifically measured in the model (in other words, they are in the u term), AND if 
these factors are associated with the Xs that are in the model, THEN the assumption 
is violated. 

 
  This is the idea behind understanding omitted variable bias in multiple regression 

coefficients, which we’ll talk about in a later set of notes.  It is a key concept in 
multiple regression, and in this course. 
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 MLR Assumption 5: The error terms all have the same variance; that is, the error 
variance is not a function of the Xs in the model (this is the assumption of 
homoskedasticity): 

 
    Var(u| X1, X2, X3, …. Xk) = σ2 
 
 ⇒ Under Assumptions MLR1 through MLR4, jjE ββ =)ˆ(  for j = 0, 1, 2,  ….k. 
 
   In other words, when these assumptions hold, jβ̂  is an unbiased estimator of jβ , 

where jβ  is the “true” population parameter. 
 
 ⇒ Under Assumptions MLR1 through MLR5, no other linear unbiased estimator of the 

β coefficients can have smaller sampling variances than those of the least-squares 
estimator, i.e., they are BLUE (Best Linear Unbiased Estimators). This is known as 
the Gauss-Markov Theorem (and thus MLR1 through MLR5 are often referred to as 
the Gauss-Markov assumptions) (see Kennedy, pp. 42-46 for additional perspective) 

 
  Thus, the assumptions and the G-M theorem provide a baseline – i.e., “use OLS” – 

that we know we can depend on unless something goes tragically wrong.  That is, 
OLS is BLUE unless the assumptions are violated, in which case we need to worry 
about what to do.  

 
  Many of the topics we cover in this course, and in other econometrics courses you take, 

are concerned with how to estimate models when these assumptions are violated.   
 
 
 

 

mac


mac


mac


mac


mac


mac


mac


mac


mac


mac



